WP 7 - Bioeconomic modelling of N.Atlantic fish resources

Partners

- PML, UK (Manuel Barange, Gorka Merino)
- IRD, France (Christian Mullon)
- UEA, UK (William Cheung)
- CEFAS, UK (Simon Jennings)

EURO-BASIN: Field studies Higher trophic levels and TransAtlantic Synoptic Surveys _____ prey Transect studies -Stations •Biogeochemistry + LTL * Norwegian Ecosystem Dynamics Sea Syre North Atlantic Subpolar Gyre Western N. Atlantic Gyre

WP 7 - Bioeconomic modelling of N.Atlantic fish resources

Objectives

To "assess the impacts of Global Environmental Change (GEC), including climate change, fisheries management and market developments, on the productivity, dynamics and services of North Atlantic fish commodities. Specifically we will:

- Estimate the economic cost of sub-optimal fisheries management (hindcast) Task 7.1
- Predict the distribution and production of key fish stocks based on climate change projections Task 7.2
- Develop and apply a bio-economic model of fish commodities in the North Atlantic Task 7.3
- Investigate the consequences of climate change and economic globalisation on the basin-wide fish production system Task 7.3

Task 7.1 Estimating the economic loss of suboptimal fisheries management in the North Atlantic

THE WORLD BANK

Washington DC

world

the

stocks

Fish

Intro:

1) Nearly 70% of world's fisheries are misusing the potential of food and economic production (50% due to over and 20% due to subexploitation).

2) NA has been one of the firstly exploited and overexploited oceanic areas.

3) Historical deviations from production and economic optima can be estimated:

1. Hindcasting

2. Comparing data with potential trends under alternative management options.

Figure 18: Total Fishes - Synoptic qualitative representation of the state of development of the assessed Home Areas. See text for the indicator used and the colour coding. Rows are ranked in relation to the decade in which the average maximum landing has been reached.

Objective: Estimate the loss of potential economic rent in the North Atlantic fisheries system during the last ca. 50 years. The loss is the difference between the potential and the actual net benefits.

Figure 20 Maximum Sustainable Yield and Maximum Economic Yield

Methodology

- 1) Estimate potential MSY and MEY equilibria using biological parameters, fisheries data, biological assessments and economic information.
- 2) Rebuild fish stocks population dynamics, compare estimated and observed landings to validate parameters.
- 3) Build dynamic supply and economic yield potential and compare with observed catch series and implemented regulation history.
- 4) Build management scenarios to see how deviations from optima might have been (and might be in the future) be avoided.

Task 7.2 Predict the distribution and production of key fish stocks based on climate change projections.

Global climate change projections

Current species distribution

Population dynamics

Probability of occurrence by:

- Temperature
- Depth limits
- Habitats
- Distance from sea-ice

Spp invasion rates

Predicted future species distribution

Cheung et al. (2009) Fish and Fisheries

Global climate change projections

Current species distribution

Probability of occurrence by:

- Temperature
- Depth limits
- Habitats
- Distance from sea-ice

Predicted future species distribution

Cheung et al. (2009) Fish and Fisheries

Predicting catch from macroecology

$$\begin{split} \log_{10} \mathrm{MSY'} &= -2.881 + 0.826 \times \log_{10} P' - \\ 0.505 \times \log_{10}(A) - 0.152 \times \lambda + 1.887 \times \log_{10} \mathrm{CT} + \\ 0.112 \times \log_{10} \mathrm{HTC'} + \epsilon \end{split}$$

Cheung et al. (2008) Mar. Ecol. Prog. Ser. 365: 187-197.

Projecting effects of changes in physical conditions on species distributions and potential catch

Maximum catch potential changes

Cheung et al. (2010) Global Change Biology

EuroBASIN - Incorporate full range of ecological and biogeochemical factors

Integrated size-species based approaches

- Explicitly model the dynamic linkages between changes in ocean conditions, physiology, life history traits, recruitment, population dynamics and community sizestructure;
- Using community size-spectrum to estimate ecological constrains on changes in species' distributions, abundance and productivity under climate change scenarios.

Expected outputs

- An improved dynamic bioclimatic envelope models that account for projected changes in biogeochemistry and species interactions;
- Projected changes in fisheries catch potential of major commercial fishes and invertebrates in N. Atlantic on 30' x 30' grid from ecological models;
- The model outputs are then used to develop scenarios of changes in fisheries resources for economic analysis.

Task 7.3. Develop a bio-economic model of fish commodities in the North Atlantic

A modeling approach

Processes

- Trophic production (WP7.2)
- Fishing/ Demand
- Fisheries investment

- Scales
- Spatial extension : Atlantic basin
- Spatial resolution : FAO areas or smaller
- Time horizon : 30-50 years
- Time step : year
- Granularity : 15 production areas, 50 fish populations, 50 fleets, 100 fish product markets

Networks Economics

Mullon C, Shin Y and Cury P (2009) *NEATS: A Network Economics Approach to Trophic Systems.* Ecological modelling. 220 (21) 3033-3045

Website: http://www.pml-globalpelagic.org.uk

Double exposure: Control parameters

- Climate change
- Climate variability
- Carrying capacity changes
- Renewal rate changes
- Latitudinal climate changes

- Economic globalization
- Demand changes
- Fishing capacity
- Depreciation rate
- Catchability changes
- Total allowable catches
- Fuel prices changes
- Fishing rights
- Import taxes

Data: Production areas (about 15)

Needed	Availability
Every year, production estimates	From other WPs
Every year, mixing estimates	From other WPs

Data: Fish Populations (about 50)

Needed	Availability
Every year, catches	Fishstat, ICES
Every year, stock estimates	ICES
Constant: biological parameters	ICES, UCB-Sea Around Us
used in production functions	
(assimilation efficiency, trophic	
efficiency, carrying capacity, renewal	
rate, etc)	

Data: catches; Fish species x fleets

Needed	Availability
Every year, catches	Fishstat, ICES

Data: Fleets (~50)

	· · ·
Needed	Availability
Every year, catches	Fishstat
Every year, fishing effort and fishing capacity estimates	ICES
Magnitude order of fishing costs, of vessel prices	Ifremer,, XX Europe, US-Canada

Data: shipments: fleets x commodity markets

Needed	Availability
Every year, shipment flows	Eurostat, OCDE, WTO
Magnitude order of shipment costs	lfremer,, XX Europe, YY US- Canada
Data: Commodity ma	rkets (about 100)
Needed	Availability
Every year, production volumes	Fishstat, OCDE
Every year, production prices	Fishstat, Sea Around Us
Magnitude order of conversion factors, production costs, importation taxes	lfremer,, XX Europe, YY US- Canada