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Overview

* Biogeochemical modelling in the North Atlantic -
State of the art

* Model assessment and lessons from data
assimilation studies
— Discrepancy between lab results and models
— Discrepancy between field data and models
— Portability
— Predictability

« Challenges and opportunities
— Adaptive modelling
— Property variables versus material variables




State of the art;

Empirical Models
pre-JGOFS type

Sea surface

Steele (1958)
Z Wroblewski (1977)

Evans & Parslow
(1985):
spring bloom

Fasham et al. (1990):
microbial loop

Mixed layer
base circulation settling




State of the art:
Functional-group type models

o

Nanophyto.

Microzoopl. [ gl Mesozoopl.

Siparticulate
M\ ' O(100) Parameters:

 uptake, loss rates
y W o « remineralisation profiles

o multiple elements (N,P,C,Si,Fe)

Sedimentation

Examples:
Moore et al. (2002)
 Aumont et al. (2003)
e Gregg et al. (2003)
o “Dynamic Green Ocean Model“ consortium




The “cost” of ecological complexity

Number of adjustable

Ecosystem model stoichiometry
parameters

Restoring usually Redfield

NPZD-type usually Redfield

Multiple functional groups,

multiple elemental cycles prognostic




Eddy-resolving Modelling

N-based ecosystem model

photosynthesis
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Results: Very little change in export production
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Annual Primary Production (gC m-2) Simulated Export Ratio
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1D-calibration of poorly known model
parameters results in significant
Improvements in PP, ef-ratio and
ecosystem dynamics even in 3D.

s " 8 | (Oschlies & Schartau, 2005)
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How to simulate biogeochemical
cycles in the anthropocene?

 Shifts in biogeographical provinces
— Temperature
— Stratification, mixing
— Sea ice

Should -In principle- be OK with current models.




Example NAO related variability

NAO index

NAD Index
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NAO related variability at BATS

Observations Simulation

surface NO,
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NAO-related PON export variations

PON export z,,,, APON export z,,,
high NAO high NAO minus low NAO

mol N m?2 yr!

B0

50°N

| | | | |
Ao
- M (;}/,/_, i
RN

)

20°N

100w BOW BOoW AT 200 0°E
LONGITUDE LONGITUDE

(Oschlies, 2002)




Correcting for physical model biases

Semi-prognostic, adiabatic correction method

Dissolved O, [mi/I]

(Eden & Oschlies, 2006)




How to simulate biogeochemical
cycles in the anthropocene?

« Extrapolating to new conditions
— Increasing temperatures of warmest waters
— Acidification
Questionable with current models!




Example: pCO,-sensitive
stoichiometry

e Mesocosm experiments suggest increase of
C:N In export
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(Riebesell et al., subm)




Simulated Increase In suboxic areas
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Change in surface chlorophyll
Satellite-derived changes 2003-1998

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

(Gregg et al., 2005)




Simulated Changes in Chlorophyll

Simulated impact of pCO,-sensitive C:N

Zooplankton utilise C and N but not Chl!



Part |11
How can we assess

our models?




Crisis In marine ecological modelling
Analysis of 153 publications of aquatic ecosystem models (1990-2002)

(a) Sensitivity analysis (%) (b) Optimization (%)
NEE

0 20 40 60 8 100 O 20 40 60 80 100
(c) Quantification of goodness-of-fit (%) (d) Validation (%)

Na 699 | No | 520
I

30.1 Yes 7.1

O 20 40 60 8 100 O 20 40 60 80 100
(Arhonditsis & Brett, 2004)




Modellers’ Codex

 State underlying assumptions
(“a model I1s not more than you put into It*)

« Aim for quantitative model evaluation
(goal function, cost function)




U.S. JGOFS test-bed project:
Ecosystem model descriptions

Models 1-4: N, P, Z, D (NH,,DOM, C:chl, T) (ccMA, McCreary, Hood,
Anderson/McGillicuddy)

Models 5-6: 2P, 2Z, Fe (christain, Wiggert)

Model 7: 2P, 2Z, Si (chai

Model 8: 2P, 3z, Si, DOM (rujii

Model 9: 2P, 4Z, DOM (Laws/Hood)

Model 10: C, Alk, P, Z, 2DOM (schartau)

Model 11: 3P, 0z, 3DOM, Si, Fe (Dunne)

Model 12: 3P, 1Z, 4DOM, Si, Fe (Dusenberry/Doney/Moore)
MM: Mean Model

LST: Least Squares Test (N,P,Z,D) (Friedrichs/Hood/Wiggert/Laws)

(courtesy Raleigh Hood)




First results of U.S. test-bed project
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-Most models do significantly better for individual assimilation

-Only 4 models do substantially better than MM = “Mean Model’

-More complex models (#5-12) show greater variability in performance and

they do not necessarily perform better than the simple NPZD models (#1-4)
(courtesy Raleigh Hood)




Portability

o = 3 P boxes O =>2 Zboxes
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o =1 P box ¢ =1Zbox

— —
W w
o Q
O O
- o
O 9O
— —
4] 4]
O O
@ ©
= =
W w
W W
O o
O O

50 - . 50+

O rA TR T AN TN TN NN NN SN SN TR NN NN NN M | 0 rAN R T AN TN TN NN N SN N TN NN NN NN M
0 20 40 60 80 0 20 40 60 80
Simultaneous Cost Simultaneous Cost

More complex models are not always more portable (e.g. to
different climate regimes). (courtesy of Raleigh Hood)




_essons from data assimilation studies
(so far mainly NPZD-type models)

(Fasham & Evans, 1995; Matear, 1995; Prunet et al., 1996; Hurtt & Armstrong, 1996/1999; Spitz et al.,
1998/2001; Fennel et al., 2001; Schartau et al., 2001; Friedrichs, 2002; Schartau & Oschlies, 2003;
Oschlies & Schartau, 2005; U.S. JGOFS testbed project....)

e Only 10-15 parameters can be constrained.

 Lots of unconstrained degrees of freedom. Makes
extrapolation to different climate conditions problematic.

e models too complex?
* Model-data fits remain relatively poor.
 Errors in physical forcing.

e models not complex enough?

Do we yet have the right model structures?




Part 111
How can we improve

our models?




Strategy |I:
Increase complexity

e Reduce misfits
— Add degree of realism
— Add degrees of freedom

 How to constrain model?
— More (and more detailed) observations
— Physiological information




Strategy |I1:
reduce model complexity

o Statistical approaches
— Attractor in phase space
— Dominant modes

— Assumption of stationarity?
— Biological meaning of model variables? (so what?)

« Aggregation of model compartments
— Uses complex model results as reference solution
— Assumes overall model structure to be OK




Strategy I11: Mechanistic Models

Search for governing equations

Conservation equations: nutrients (N, P, SI, Fe, etc.)

energy (light, C,,,)

Membrane physics: transport processes

Thermodynamics: chemical potential differences

Basic metabolic equations +
non-equilibrium thermodynamics

Physiological invariants: DNA, RNA, proteins, amino acids

Dynamic Energy Budget theory




Strategy IV: Adaptive Models

Acknowledge uncertainties:
adaptive modelling

1. Material variables
(e.g., DIN, PHY(N), PHY(C), ZO0,...)

2. Property variables
(€.9., Ty TOOd preference, variance of
Property distribution,...)




Example 1: Size as property

(Oschlies & Garcon, 1999)

sinking particles

N-based ecosystem model + equation for number of PHY cells

=» Diagnose spectral slope from phytoplankton biomass and cell number.
=>» Integrate V(r) and A(r) analytically over entire size spectrum.




Representing Size

log (1)

Discrete, explicitly resolved size classes




Representing Size
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Continuous size spectrum (between 1, , I'ay)




Representing Size
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Global implementation of size-
structured model

Winter




Fraction of Picophytoplankton (0.2-2um)




Effective half-saturation “constant”
for NO

Winter

160°E




Example 2: optimal growth
temperature as property variable

Phytoplankton ? Zooplankton =— Bacteria

Optimal ‘"T_
Temperature \ Al L~ DEII'HHS/

DOM

v  (M.Pahlow et al.)




Temperature and growth

Phytoplankton optimal temperature and growth

(M.Pahlow et al.)




Temperature and growth efficiency

Temperature dependence of growth efficiency

Rivkin and Legendre (2001): Ey = f(T) Eq = const
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* Model reproduces temperature dependence, whether

prescribed or not!
e Emergent property?




Summary

 Interannual to decadal variability Iin new
production & export production to large extent

controlled by physics
= can be modelled ~ well by current NPZD-type

models

 Ecological variability
= complex models difficult/impossible to calibrate.

— large model-data discrepancies
— 3 promising new modelling approaches!




The End




Hints for structural improvement

Observed variability of the half-saturation “constant” K.
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Results from data assimilation

Optimised half-saturation constant

(Loza et al., 2004)




Role of size

Phytoplankton size range: ~0.2 - 200 pm.
Size determines surface:volume ratio
=» affects exchange with surrounding medium.

Observational estimates of the maximum growth rate

¢ Williams (1964)
o Blasco et al. (1982)

-0.13 A Chan (1978)
V x Eppley and Sloan (1966)

+ Bucciarelli et al. (subm.)

pumax = 3.4

= Sunda and Hutsman (1995)
x Goldman (1993)

¢ Muggli et al. (1996)

& Muggli and Harrison (1997)
m Milligan and Harrison (2000)
& Kudo et al. (2000)

= Goldman et al. (1992)
Schone (1982)

1E+02 1E+04

Cell volume (um3)
(Sarthou et al., 2005)




“First principles”

NO, uptake rate:

Diffusion:

Biomass:

Max. growth rate:




“First principles”

2—¢
ula)m NO;

1

Kl(rj +NO,
I

NO, uptake rate:  V(r) =

(Aksnes & Egge, 1991)

Small cells can grow faster
- why, then, do large cells exist?

Loss processes can depend on size as well!




“FIrst principles™

Exudation rate: Ar) = Ar

(Bjornsen, 1988)

“Property tax” rather than “income tax”.




Simulated net phytoplankton growth
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 small cells in oligotrophic,
well-lit regions

e medium cells in mesotrophic
regimes

o large cells in eutrophic regimes
e * Decreasing light causes an
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1D test sites

150°E T10%

annual surface nitrate amplitude (WOAQOT)




aksnex ncdon 2.0

First 1D results

Simulated Chlorophyll, shaded areas: >50% of size < 5um
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First 1D results

Simulated Chlorophyll of sizes > 20 um
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First 1D results

Simulated slope of log-log size spectrum
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Ecological modelling - how can we proceed?

« Model development guided by data assimilation.
Identify and remove redundancies.
Add complexity after analysis of residuals.
Incubation experiments (sea & lab).
Mesocosm experiments.

Time & space
time-series sites. scale

Paleo data. \”

« Do not disregard alternative model structures
(e.g., based on size, energy, membrane surfaces, ....)

« Be ambituous Search for “Kepler‘s Laws* instead of
“Ptolomaic Epicycles®.




Is there an appropriate level of
ecosystem-model complexity?

(An ecological equivalent of the Navier-Stokes
equations Is not known (yet?))
e Overview over current ecosystem-model categories
o |_essons from data assimilation studies

o First steps towards a transition from empirical to

mechanistic ecosystem models




Example: pCO,-sensitive N, fixation

e Culture experiments with Trichodesmium
suggest
— Increased N, fixation with increasing pCO,,
— Increased C:P
— Increased N:P




PCO,-sensitive N, fixation

QuickTime™ and a QuickTime™ and a
TIFF (LZW) decompressor TIFF (LZW) decompressor
are needed to see this picture. are needed to see this picture.

(Barcelos e Ramos et al., subm)




