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+* Aim: Identify and document the state of the art of climate-related ecosystem

research in the North Atlantic and associated shelf seas.

Models need to resolve “feedbacks of global change on the structure,
function, and dynamics of North Atlantic ecosystems”

Models “must concentrate the biological resolution at the level of the
species or trophic level of interest”

From Report of the first BASIN workshop, Reykjavik, 11-15 March 2005



Need to consider: phytoplankton group composition
effects on zooplankton production

higher trophic levels, e.g. planktivorous fish

% trophic linkages

“impossible to provide high resolution for all species involved in
the ecosystem”

From Peter Wiebe’s talk yesterday
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Adding complexity: problems

Poorly understood ecology

Aggregation

Lack of validation data

All in the interactions




Frequency of coccolithophore blooms
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Levins (1966) distinguished between:

.
o §=-1.07 + 2.74x

realism
(complexity)

generality

Levins (1966) “The strategy of model building in population biology”
American Scientist 54, 421-431.
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Rhomboid Approach

The rhomboids indicate

the conceptual characteristics
for models with different
species and differing

areas of primary focus.

Rhomboid is broadest where
model has its greatest
functional complexity i.e., at
the level of the target
Organism.

deYoung et al, 2004



&+ NPZD models are able to capture basic
= variability in chl, primary production

NPZD models “are generally able to accurately simulate seasonal cycles of
plankton variables in specific ocean areas. However, their generality across
ocean basins and their ability to represent spatial and temporal variability are

limited”

Quote from Report of the first BASIN workshop, Reykjavik, 11-15 March 2005



DGOM vs NPZD comparison (QUEST)
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“Small changes in physical forcing fields can produce greater
changes in plankton distributions than substantial changes in
ecosystem model complexity” (Friedrichs et al., 2006)

Friedrichs et al. (2006). Deep-Sea Res. 1l 53, 576-600.
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Baltic Sea

Alheit et al. 2005

Smoother & confidence interval
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Regime Shift Scenario
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Basin scale models: concentrate complexity
at trophic levels of interest

But how to do I1t?
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Andreas Moll, ECOHAM-Model Competition: population vs rest zoo

model Carbon CyCIe Pseudocalanus
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Empirical approaches

Example: Moore et al. (2002) made calcification 5% of the photosynthesis
by small phytoplankton.

“At present it is not possible to model dynamically or predict calcite
formation in the ocean”

Moore, K.J. et al. (2002). Deep-Sea Res. 11 49, 403-462.
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US JGOFS Regional Ecosystem Testbed Project

Marjorie Friedrichs

Arabian Sea Process Study (ASPS),

Antarctic Environment and Southern Ocean Process Study (AESOPS),
Equatorial Pacific Process Study (EgPac),

second iron enrichment experiment (IronExll),

Bermuda Atlantic Time-Series Study (BATS), and
Hawaii Ocean Time-series (HOT)
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Conclusions

Adding complexity ad infinitum to models won’t work. Complexity
should be concentrated at trophic levels of interest, but care must be
exercised to ensure that interactions with other trophic levels are
adequately represented, and system feedbacks of interest represented.

NPZD models do a generally good job of simulating bulk properties,
e.g. chl, primary production; attention to physics and model forcing
IS important.

Adding additional complexity, with robust parameterisations, poses
a major challenge for the modelling community.



