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From Report of the first BASIN workshop, Reykjavik, 11-15 March 2005

Models need to resolve “feedbacks of global change on the structure,
function, and dynamics of North Atlantic ecosystems”

Models “must concentrate the biological resolution at the level of the
species or trophic level of interest”

Aim: Identify and document the state of the art of climate-related ecosystem
research in the North Atlantic and associated shelf seas.



Need to consider: 

From Peter Wiebe’s talk yesterday

trophic linkages

phytoplankton group composition

effects on zooplankton production

higher trophic levels, e.g. planktivorous fish

“impossible to provide high resolution for all species involved in
the ecosystem”
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Adding complexity: problems

Poorly understood ecology low
Si
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N:P
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light

Aggregation

Lack of validation data

All in the interactions



Frequency of coccolithophore blooms

Based on
SeaWiFS

DGOM

Le Quéré et al.
(2006)



Levins (1966) distinguished between:

accuracy

generality

realism
(complexity)

Levins (1966) “The strategy of model building in population biology”
American Scientist 54, 421-431. 



Throwing everything but the kitchen sink 
into models is an unreliable option
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Rhomboid Approach

The rhomboids indicate 
the conceptual characteristics 
for models with different
species and differing 
areas of primary focus.

Rhomboid is broadest where
model has its greatest 
functional complexity i.e., at 
the level of the target 
Organism.

deYoung et al, 2004



Quote from Report of the first BASIN workshop, Reykjavik, 11-15 March 2005

NPZD models “are generally able to accurately simulate seasonal cycles of
plankton variables in specific ocean areas. However, their generality across
ocean basins and their ability to represent spatial and temporal variability are
limited”

NPZD models are able to capture basic
variability in chl, primary production



DGOM vs NPZD comparison (QUEST)
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Physics
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(Popova et al., 2006)



“Small changes in physical forcing fields can produce greater
changes in plankton distributions than substantial changes in
ecosystem model complexity” (Friedrichs et al., 2006)

Friedrichs et al. (2006). Deep-Sea Res. II 53, 576-600.



silicate diatoms

coccolithophores mesozooplankton



Complex models may be usefully applied to
regional domains
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Anderson and Pondaven (2003)
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Dinoflagellates

hatching of resting
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But how to do it?

Basin scale models: concentrate complexity
at trophic levels of interest
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Calanus finmarchicus

prey

predators



Calanus finmarchicus

prey

predators



model 
diagram

Andreas Moll, ECOHAM-Model Competition: population vs rest zoo
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Empirical approaches

Example: Moore et al. (2002) made calcification 5% of the photosynthesis
by small phytoplankton.

“At present it is not possible to model dynamically or predict calcite
formation in the ocean”

Moore, K.J. et al. (2002). Deep-Sea Res. II 49, 403-462.
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Let’s  not forget the interactions!
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production = gross growth efficiency * intake
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Rigorous validation required

Quantification of model uncertainty





US JGOFS Regional Ecosystem Testbed Project

Marjorie Friedrichs

Arabian Sea Process Study (ASPS), 
Antarctic Environment and Southern Ocean Process Study (AESOPS),
Equatorial Pacific Process Study (EqPac), 
second iron enrichment experiment (IronExII), 
Bermuda Atlantic Time-Series Study (BATS), and 
Hawaii Ocean Time-series (HOT) 





Conclusions

NPZD models do a generally good job of simulating bulk properties, 
e.g. chl, primary production; attention to physics and model forcing
is important.

Adding complexity ad infinitum to models won’t work. Complexity 
should be concentrated at trophic levels of interest, but care must be
exercised to ensure that interactions with other trophic levels are
adequately represented, and system feedbacks of interest represented.

Adding additional complexity, with robust parameterisations, poses
a major challenge for the modelling community.


