BASIN meeting Hamburg 23 – 25 January 2007

Biogeochemical Modelling in the North Atlantic

Andreas Oschlies IFM-GEOMAR, Kiel, Germany

Overview

- Biogeochemical modelling in the North Atlantic -State of the art
- Model assessment and lessons from data assimilation studies
 - Discrepancy between lab results and models
 - Discrepancy between field data and models
 - Portability
 - Predictability
- Challenges and opportunities
 - Adaptive modelling
 - Property variables versus material variables

State of the art: Empirical Models pre-JGOFS type

Steele (1958) Wroblewski (1977) Evans & Parslow (1985): spring bloom Fasham *et al.* (1990): microbial loop

State of the art: Functional-group type models

- Aumont et al. (2002)
- Gregg et al. (2003)
- "Dynamic Green Ocean Model" consortium

The "cost" of ecological complexity

Ecosystem model	stoichiometry	Number of adjustable parameters
Restoring	usually Redfield	O (1)
NPZD-type	usually Redfield	O(10)
Multiple functional groups, multiple elemental cycles	prognostic	O(100)

Eddy-resolving Modelling N-based ecosystem model photosynthesis Simulated spring bloom at (1/9)° resolution J*P р ۳<u>ع</u>, 5 ting μ_p*Ρ γ₂*Z 60°N - $\gamma_{1}G(P)^{*}Z$ $(1-\gamma_1)G(P)^*Z$ 2 μ_D*D -1 Z 0.5 3uı $\mu_Z^{\ *Z^{\ 2}}$

10°E

(Oschlies, 2002)

8.05

0.02

0.01

В sinking particles Model optimisation by data assimilation. (genetic algorithm, Schartau & Oschlies, 2003a,b)

w^{*dD/dz}(Oschlies & Garcon, 1999)

30°W

10°W

0º -

90°W

70°W

50°W

LONGITUDE

Results: Very little change in export production

1D-calibration of poorly known model parameters results in significant improvements in PP, ef-ratio and ecosystem dynamics even in 3D.

(Oschlies & Schartau, 2005)

Annual Primary Production (gC m⁻²)

How to simulate biogeochemical cycles in the anthropocene?

- Shifts in biogeographical provinces
 - Temperature
 - Stratification, mixing
 - Sea ice

Should -in principle- be OK with current models.

NAO related variability at BATS

Observations

Simulation

NAO-related PON export variations

PON export z_{euph}, high NAO

Δ PON export z_{euph} , high NAO minus low NAO

(Oschlies, 2002)

Correcting for physical model biases Semi-prognostic, adiabatic correction method Dissolved O_2 [ml/l] ^{c)} Boyer & Levitus corrected b) a) uncorrected 60°N 50°N 40°N 40°W 40°W 40°W 80°W 80°W 0°E 80°W 0°E

(Eden & Oschlies, 2006)

How to simulate biogeochemical cycles in the anthropocene?

- Shifts in biogeographical provinces
 - Temperature
 - Stratification, mixing
 - Sea ice
 - Should -in principle- be OK with current models.
- Extrapolating to new conditions

 Increasing temperatures of warmest waters
 Acidification
 Questionable with current models!

Example: pCO₂-sensitive stoichiometry

• Mesocosm experiments suggest increase of C:N in export

(Riebesell et al., subm)

Simulated increase in suboxic areas

O_2 on 27.0 isopycnal

 O_2 on sig=27.0 (mmol m⁻³), C:N=const

Suboxic volume

Change in surface chlorophyll Satellite-derived changes 2003-1998

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

(Gregg et al., 2005)

Simulated Changes in Chlorophyll

Simulated impact of pCO₂-sensitive C:N

CHL Change due to pCO2-sensitive C:N changes (mg/m^3)

Zooplankton utilise C and N but not Chl!

Part II How can we assess our models?

Crisis in marine ecological modelling

Analysis of 153 publications of aquatic ecosystem models (1990-2002)

Modellers' Codex

- State underlying assumptions ("a model is not more than you put into it")
- Aim for quantitative model evaluation (goal function, cost function)

U.S. JGOFS test-bed project: Ecosystem model descriptions

- Models 1-4: N, P, Z, D (NH₄,DOM, C:chl, T) (CCMA, McCreary, Hood, Anderson/McGillicuddy)
- Models 5-6: 2P, 2Z, Fe (Christain, Wiggert)
- Model 7: 2P, 2Z, Si (Chai)
- Model 8: 2P, 3Z, Si, DOM (Fujii)
- Model 9: 2P, 4Z, DOM (Laws/Hood)
- Model 10: C, Alk, P, Z, 2DOM (Schartau)
- Model 11: 3P, 0Z, 3DOM, Si, Fe (Dunne)
- Model 12: 3P, 1Z, 4DOM, Si, Fe (Dusenberry/Doney/Moore)
- MM: Mean Model
- LST: Least Squares Test (N,P,Z,D) (Friedrichs/Hood/Wiggert/Laws)

(courtesy Raleigh Hood)

First results of U.S. test-bed project

1P, 1Zmulti-Z3P, 0-1Z-Most models do significantly better for individual assimilation-Only 4 models do substantially better than MM = 'Mean Model'-More complex models (#5-12) show greater variability in performance and
they do not necessarily perform better than the simple NPZD models (#1-4)

(courtesy Raleigh Hood)

Portability

 More complex models are not always more portable (e.g. to different climate regimes). (courtesy of Raleigh Hood)

Lessons from data assimilation studies (so far mainly NPZD-type models)

(Fasham & Evans, 1995; Matear, 1995; Prunet et al., 1996; Hurtt & Armstrong, 1996/1999; Spitz et al., 1998/2001; Fennel et al., 2001; Schartau et al., 2001; Friedrichs, 2002; Schartau & Oschlies, 2003; Oschlies & Schartau, 2005; U.S. JGOFS testbed project....)

- Only 10-15 parameters can be constrained.
 - Lots of unconstrained degrees of freedom. Makes extrapolation to different climate conditions problematic.
 - models too complex?
- Model-data fits remain relatively poor.
 - Errors in physical forcing.
 - models not complex enough?

Do we yet have the right model structures?

Part III How can we improve our models?

Strategy I: increase complexity

- Reduce misfits
 - Add degree of realism
 - Add degrees of freedom
- How to constrain model?
 - More (and more detailed) observations
 - Physiological information

Strategy II: reduce model complexity

- Statistical approaches
 - Attractor in phase space
 - Dominant modes
 - Assumption of stationarity?
 - Biological meaning of model variables? (so what?)
- Aggregation of model compartments

 Uses complex model results as reference solution
 Assumes overall model structure to be OK

Strategy III: Mechanistic Models Search for governing equations

Conservation equations:

Membrane physics:

Thermodynamics:

Physiological invariants:

- nutrients (N, P, Si, Fe, etc.)
- energy (light, C_{org})
- transport processes
- chemical potential differences
- Basic metabolic equations + non-equilibrium thermodynamics
- DNA, RNA, proteins, amino acids
- Dynamic Energy Budget theory

Strategy IV: Adaptive Models Acknowledge uncertainties: adaptive modelling

Material variables
 (e.g., DIN, PHY(N), PHY(C), ZOO,...)

2. Property variables
 (e.g., T_{opt}, food preference, variance of
 Property distribution,...)

Example 1: Size as property

N-based ecosystem model + equation for number of PHY cells

→ Diagnose spectral slope from phytoplankton biomass and cell number.
→ Integrate V(r) and λ(r) analytically over entire size spectrum.

Discrete, explicitly resolved size classes

Representing Size

Continuous size spectrum (between r_{min} , r_{max})

Representing Size

Continuous size spectrum (between r_{min} , r_{max})

Global implementation of sizestructured model

Fraction of Picophytoplankton (0.2-2µm)

Effective half-saturation "constant" for NO₃ uptake

Example 2: optimal growth temperature as property variable

Temperature and growth

Phytoplankton optimal temperature and growth

Temperature and growth efficiency

Temperature dependence of growth efficiency

- Model reproduces temperature dependence, whether prescribed or not!
- Emergent property?

Summary

- Interannual to decadal variability in new production & export production to large extent controlled by physics
 - ⇒ can be modelled ~ well by current NPZD-type models
- Ecological variability
 - \Rightarrow complex models difficult/impossible to calibrate.
 - \Rightarrow large model-data discrepancies
 - \Rightarrow \exists promising new modelling approaches!

The End

Hints for structural improvement

Observed variability of the half-saturation "constant" K_N.

(Harrison et al., 1996)

Results from data assimilation

Optimised half-saturation constant

(Loza et al., 2004)

Role of size

Phytoplankton size range: ~0.2 - 200 µm.
Size determines surface:volume ratio
→ affects exchange with surrounding medium.

Observational estimates of the maximum growth rate

"First principles"

"First principles"

NO₃ uptake rate:

$$V(r) = \frac{\mu_1(I)\left(\frac{r}{r_1}\right)^{2-\zeta} NO_3}{K_1\left(\frac{r}{r_1}\right) + NO_3}$$

(Aksnes & Egge, 1991)

Small cells can grow fasterwhy, then, do large cells exist?

Loss processes can depend on size as well!

"First principles"

Exudation rate: $\lambda(r) = \lambda_1 r^{-1}$

(Bjornsen, 1988)

"Property tax" rather than "income tax".

Simulated net phytoplankton growth

Net growth rate:

$$NGR(r) = \frac{\mu(I)NO_3}{K_1r + NO_3} - \lambda_1 r^{-1}$$

- small cells in oligotrophic, well-lit regions
- medium cells in mesotrophic regimes
- large cells in eutrophic regimes
- Decreasing light causes an increase in optimum cell size.

1D test sites

First 1D results

Simulated Chlorophyll, shaded areas: >50% of size $< 5\mu m$

First 1D results

Simulated Chlorophyll of sizes $> 20 \ \mu m$

First 1D results

Simulated slope of log-log size spectrum

3.1

Ecological modelling - how can we proceed?

Model development guided by data assimilation.
 Identify and remove redundancies.
 Add complexity after analysis of residuals.

- Incubation experiments (sea & lab).
- Mesocosm experiments.
- time-series sites.
- Paleo data.

Time & space scale

- Do not disregard alternative model structures
 (e.g., based on size, energy, membrane surfaces,)
- Be ambituous Search for "Kepler's Laws" instead of "Ptolomaic Epicycles".

Is there an appropriate level of ecosystem-model complexity?

(An ecological equivalent of the Navier-Stokes equations is not known (yet?))

• Overview over current ecosystem-model categories

•Lessons from data assimilation studies

• First steps towards a transition from empirical to mechanistic ecosystem models

Example: pCO₂-sensitive N₂ fixation

- Culture experiments with *Trichodesmium* suggest
 - increased N₂ fixation with increasing pCO₂
 - Increased C:P
 - Increased N:P

pCO₂-sensitive N₂ fixation

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

(Barcelos e Ramos et al., subm)